

A Method to Diagnose Self-weaknesses for Software
Development Organizations

Chi-Lu Yang1, 2, Yeim-Kuan Chang1, Chih-Ping Chu1

1 Department of Computer Science and Information Engineering, National Cheng Kung University
2 Networks and Multimedia Institute, Institute for Information Industry

1,2Tainan, Taiwan R.O.C.
stwin@iii.org.tw, ykchang@mail.ncku.edu.tw, chucp@csie.ncku.edu.tw

Abstract
A root cause is a source of a defect such that if it is

removed, the defect is subsequently decreased or
removed. By analyzing the root causes of defects of our
software projects, we will be able to determine the
weaknesses of our software development teams. We
could thus decide on how much effort to be invested on
specific actions to improve the weaknesses of the teams.
In this paper, we first described how defects were
objectively collected during project development.
Second, the root causes were defined and categorized
into six groups. Then we focused on analyzing defects to
find out their root causes. Based on statistical results, the
weaknesses of the project teams were determined. The
results showed that the disturbing defects in our projects
were mainly injected in the design phase, especially in
the detail design phase. Moreover, we should invest
considerable effort on enhancing our detail design skills,
such as designing components, algorithms and interfaces,
and so on. Some corrective actions and prevention
proposals would correspondingly be acted upon and
planned, respectively. Overall, we believe that our
experiences and methods are worthy of sharing.

Keywords: cause analysis and resolution, root causes,
defect detection, defect prevention, test cases generation

1. Introduction
Defects in software could have wide and varying

effects with several levels of inconvenience to users.
Some defects only result in a slight effect on the
functionality. Thus, they may be undetectable for a long
period of time. On the other hand, more serious defects
may cause the system to crash or freeze. We should try
our best to stop these defects from reaching to our
customers. Defects might be discovered in different
situations during project development [1], such as (1)
Reports of project control with corrective actions for
problems. (2) Defective reports from the customers. (3)
Defective reports from end users. (4) Defects found in
peer reviews. (5) Defects found in testing. (6) Process
capability problems, etc. If defects are discovered, they
will be fixed with specific actions at an extra cost.

A root cause is a source of a defect such that if it is
removed, the defect is decreased or removed. By
analyzing the root causes of defects in our projects, we
will be able to determine the weaknesses of our software
development team. This is useful for similar projects in
the future. Based on this analysis, we could iteratively

decide to invest how much effort is required on
improving the weaknesses of the teams in the next
project generation. To prevent defects through enhancing
weaknesses of project teams is an ideal method for
software development organizations.

2. Related works
A defect, synonymous with fault, is a deviation

between the specification and the implementation. A
defect implies a problem discovered after the product has
been released to customers or end-users (or to another
phase in the software life cycle) [2]. Consequently,
defects reasonably make software people look bad. As
software engineers, we hope to detect and prevent as
many defects as possible before the customer and/or end-
users encounter them.

A defect would naturally amplify in the next phase
during the software life cycle, resulting in higher project
cost. To detect or prevent defects injected into a product
is an important task during software development. Meng
[3] proposed a general framework to prevent defects.
This framework consists of organization structure, defect
definition, defect prevention process, and quality culture
establishment. C.-P. Chang [4] proposed an action-based
approach to prevent defect in software processes. Action-
Based Defect Prevention (ABDP) approach applies the
classification and Feature Subset Selection (FSS)
technologies to project data during execution. Van Moll
[5] discussed the importance of life cycle modeling for
defect detection and prevention, proven methods that can
be used in an efficient way. Marek [6] reported a
retrospective root cause defect analysis study of the
defect Modification Requests (MR) discovered. Through
classifying root causes and defects, he tried to detect the
defects at the earliest possible point during software
development. Khaled [7] inquired the causal analysis of
changes for a large system. The findings from Khaled
served as input for process improvement within
organizations.

The most significant challenge for causal analysis is to
identify the causes of defects among large amounts of
defect records where the cause-effect diagram and
control chart can be utilized to support the analysis
process [8]. The defect tendency is difficult to investigate
when the root cause analysis schema is complicated and
the sample size of the defect is small [9]. To solve this
problem, the historic data on multiple releases of
products can be utilized to discover the defect patterns,
and be used to predict the possible defects. To decrease
the effort involved in causal analysis, defect distribution

can be applied to show the metrics of defects and classify
them in terms of their causes [10].

For defect prevention and root causes analysis, we
would propose a defect analyzing method to diagnose the
weaknesses of the project teams. In this paper, we would
first describe how defects were objectively collected in
distinct situations during project development. Second,
root causes are defined and categorized by inducting our
experiences. Then we will focus on analyzing defects to
determine their root causes. When we could be aware of
how and when defects are injected into our projects, we
would be able to prevent them as early as possible. Since
weaknesses of the team could be identified, corrective
actions and prevention proposals could then be enacted
and planned, respectively.

3. Project Information and Test policy
The objectivity for the detection and correction of

defects is greatly related to project organization. Testers
and developers should have equal relationships in the
project position. Both of them report to the project leader
in their own channels. Accordingly, the leader
coordinates or arbitrates their arguments when they have
issues. Testers will be able to detect bugs in an objective
manner in this hierarchy. Furthermore, they will perform
document review and collect information on defects
through testing based on testing plan in phases. Project
Organization is showed in figure 1. Other stakeholders’
definitions in the project are described as follows.

3.1 Objectively Defects Acquirement
The project leader is responsible for the project. He

should plan the project and monitor its progress. His
group members cooperate with each others to accomplish
the project. There is a special Project Analytic Group
(PAG) between the members of the project and the
stakeholders of customers. PAG is led by the project
leader and is made up by sub-leaders of developers and
testers. PAG is organized to draw out the requirements
and business models from customers. It is also
responsible for high level design, which is also called
architecture design in the project life cycle.

Customers provide requirements and special needs to
the project. In our project, the customers also work with
us to plan innovative business models. The requirement
analysis is considered as one of the most important
techniques in software engineering. In real projects,
certain defects are incurred in this phase. We spent about
30% of the project time in analyzing requirements.
Another special role in the project is the Project Quality
Assurance. His mission is to make sure that the project
processes are correctly performed.

The testers’ main missions are to plan and perform the
test plan. In the test plan, there are test strategies, test
items, test cases and simulate environment, etc. After the
test plan has been confirmed, the testers in different
phases will perform the unit test, integration test, system
test, and B-test to collect test results. One special task
with testers in the project is that their representative
should join the requirement and design document review.
Through this early stage of participation, they would be
able to understand the key requirements.

In this project, there are three developing sub-groups,
which are named homebox, bio-server, and gateway.
Developers in the sub-groups will design detailed
functions of modules and components, which are initially
peer reviewed. In addition, the developers are
responsible for developing and integrating modules and
components. Fixing bugs is one of their most significant
tasks.

The data analyzer is responsible for analyzing and
implementing system data. When there are data demands
existing in the systems, the data analyzer will design
table schemas in database, system configuration by XML
or data flowchart between modules, etc.

The project life cycle is divided into phases, which are
system analysis (SA), system design (SD), coding,
testing, demo, deployment, and so on. There are different
missions performed by stakeholders during the project
life cycle. These missions are defined in table 1. In
different phases, stakeholders perform specific missions
for the project. These are accordingly shown in table 2.

Fig. 1. Project Organization of Homebox-devices

Table 1. Specific Missions in a Project
Missions Descriptions

MM To Manage and coordinate work items and
members of the project

DR To Review Documents, including
requirement, design, and testing documents

PR To Plan the Requirement document and
analyze requirement

PD To Plan the Design document, high level
design, and detail design

PT To Plan the Testing document, test strategies,
test plan, and test cases

AF To Analyze the data scheme and to design
the data Flowchart. (high level data analysis
in design document)

AI To Analyze and Implement details of the
data scheme. (detail data analysis in design
document)

RD To Research and Develop algorithms for
functions

Dbug To fix bugs which are detected in all phases
A-test To test functions of software and system in

the Lab
B-test To test the system in real environment

Table 2. Roles vs. Specific Missions

Phases
Roles SA SD Coding Integration

& Testing

Demo /
Deploy-

ment
Leader PR DR DR MM MM
Customer DR -- -- --- B-test
Tester DR DR PT A-test B-test
Homebox
Developer DR PD RD Dbug Dbug

Bio-server
Developer DR PD RD Dbug Dbug

Gateway
Developer DR PD RD Dbug Dbug

Data
Analyzer DR AF AI Dbug Dbug

Defects might be injected during development and
would be discovered in later phases. Such defects would
be hidden in documents or systems. The document
defects could be detected by peer review, regular review
or milestone review. Engineers with more experience
would be able to detect more precisely based from the
documents. However, system defects would be detected
through code review, test in lab, training course to
customers or bugs report from end-users, and so on. The
test policy in our projects is described in the following
sub-section.

3.2 Test Case Generation and Execution
Our healthcare projects are iteratively developed in the

past three years. The life cycle of the projects are divided
into phases, which are customers’ needs and business
modeling, requirement analysis, system design,
implement and integration, and deployment. As the
phases progress, defects are not only discovered by
reviewing documents but also detected by executing test
cases, which are generated based on documents in the
early phases. The life cycle progress and test cases
generation are showed in figure 2.

In figure 2, there are three defined types of test cases:
unit test case, integrated scenario test case, and system
test case. The objective of unit test cases is to verify the
correctness of unit functions, which were built from
design documents. On the other hand, the objective of
integrated scenario test cases is to verify requirements or
special goals, which were combined from several relative
unit functions. Lastly, the objective of system test cases
is to verify the full executing system. Unit test cases are
generated at the design phase, while integrated scenario
test cases are created by requirement documents. System
test cases are used to validate original customers’ needs.

Fig. 2. Generating & Executing Test Cases to uncover

defects

Every test case includes the following columns: test
case ID, testing item, test step (each step contains pre-
defined input data/frame, pre-defined output (pass/fail
criteria), practice output, etc.), environment requirement
(software and hardware), testing results, causes generally
analysis, special needs of testing process, pre-test case
ID, tester signature, tester/developer manager signature,
remark, and so on.

When defects however are detected in later phases
such as the deployment phase, even if it is discovered by
engineers or customers, it would still require more cost
to trace the root causes (when and how) of the defects.
Therefore, the project cost would extremely increase.

4. Cause Analysis and Resolution
4.1 Root Causes Definition

The existing defects or problems in the project result
from certain root causes during project development.
After the defects or problems are injected, they would be
detected or discovered in later phases. Engineers would
spend considerable effort to detect and fix them. The
later the defects are detected, the more project cost will
be incurred. In order to decrease the project cost and
prevent future defects, we should try to address when
and how defects are injected into the projects. Our major
objective is to prevent and fix defects as early as possible.
We will define twenty-six frequent engineering defective
types by inducing our defects’ root causes. The
descriptions of root causes are shown in table 3.

4.2 Grouping Root Causes
The root causes of defects are aggregated through the

characteristics along the phases. They are categorized
into six groups, such as business model, requirement,
design, test, deployment, and hardware. Each root cause
exactly belongs to one group. These groups are shown in
the figure 3.

Table 3. Root Causes Types
ID_RC Root Causes Types The Descriptions of Root Causes

B1 Missing Address in
Business

In early phases, requirements or constraints which customers didn’t mention,
and the analyzers also missed to address them.

B2 Changing Functional
Spec.

After the engineers implemented functions, customers suggest changing
functional requirements or business models.

B3 Changing Non-
Functional Spec.

After the engineers implemented functions, customer suggests changing non-
functional requirements or business models.

R1 Missing Functional
Spec.

In the analysis phase, engineers missed functions which customers had
mentioned or implied in early phases.

R2 Faulty Functional Spec. In the analysis phase, engineers planned wrong functions which customers had
mentioned or implied in early phases.

R3 Faulty Interface Spec. In the analysis phase, engineers planned the wrong interface which customers
had mentioned or implied in early phases. Interface types are categorized into
users interface and systems interface.

R4 Ambiguous Non-
functional Spec.

Non-functional specs were lost in analysis phase. For example, performance
constraint, response time, transmission rate, and services capacity.

D1 Missing Design Spec. In the design phase, engineers missed designs of functional details which had
been recorded or implied in early phases.

D2 Faulty Design Spec. In the design phase, engineers designed wrong functional details which had
been recorded or implied in early phases.

D3 Missing Exception
Handler

In the design phase, engineers missed exception handlers of functional details
which are either necessary or implied in early phases. It is necessary to check
the user’s input format.

D4 Faulty Data Schema
Design

In the design phase, analyzers designed inapplicable data schema or structure.
Data models do not match with customers’ requests.

D5 Faulty Data-flow
Design

In the design phase, analyzers designed inapplicable data-flow for the schema.
Data models do not match with customers’ requests.

D6 Faulty Algorithm
Design

In the design phase, researchers designed inapplicable algorithms for the
functions mentioned in earlier phases. Algorithms don’t achieve customers’
requests or requirement.

IM1 Erroneous
Implementation

In the implement phase, programmers make erroneous components or modules
recommended in earlier phases.

T1 Undetected Unit Test Un-detected Unit Test

T2 Undetected Integration
Test

Un-detected Integration Test

T3 Undetected System Test Un-detected System Test

P1 Real Network Mistake In the real network, the product works abnormally as a result of other network
devices.

P2 Wrong Version Control Defects arose from someone releasing wrong software version.

P3 Wrong Configuration
Setting

Defects arose from someone operating to setup the wrong configurations in the
homebox or bio-server.

P4 Improper User
Operation

Defects occurred as a result of users operating the devices improperly.

H1 Server Hardware Failure Bio-server’s exceptions result in system’s failures.

H2 Peripherals Failure Peripherals’ exceptions result in system’s failures.

H3 OS Failure Operation System’s exceptions result in system failures.

H4 Homebox Hardware
Failure

Defects arose from homebox hardware

O1 Other Undefined Types Undefined defective types. Certain defects which did not originate from
engineering development processes.

5. Experiment Results and Discussion
By reviewing documents and testing systems, defects

were formally collected during the years 2005 and 2007.
Along the product life cycle, certain defects were
detected in the lab, while some were reported by
customers. There were 256 defects which were formally
recorded as shown in figure 4. The phase-distribution of
the discovered defects is showed in figure 5. Here, we
can observe that defects are almost normally distributed
in all phases.

Subsequently, defects were also traced backwards to
determine their root causes. Since all specifications are
recorded in documents, we could then trace their
developing progress to determine their root causes. The

distribution of root causes of all defects is shown in
figure 6. Here, the situation was generally surprising.
Previously, we misapprehended that the disturbing
defects came mainly from the requirement analysis.
However, the 43% in figure 6 have shown that the
disturbing defects were mainly injected in the design
phase, especially in the detail design phase. This was
rather interesting considering that we frequently hear
from engineers that bugs usually come from careless
requirement analysis. However, more bugs came indeed
from thoughtless design. Although we always have to
pay more attention on our testing skills for verification,
we must, moreover, spend substantial efforts in
enhancing our detail design skills, such as designing
components, algorithms, interfaces, and so on.

Fig. 3. Cause-and-effect (fishbone) diagrams

0

10

20

30

40

50

SA SD Test Deployment

Phases

D
ef

ec
ts 2005

2006
2007

Fig. 4. Defects Collection by phases Fig. 5. The Phase-Distribution of the

Discovered Defects

Fig. 6. The Distribution of Root Causes

In Figure 7 below are some interesting findings of our
study. Figure 7 (a) shows that increasing efforts spent by
engineers in SA and SD would lead to less defects
detected in the test and deployment. Figure 7 (b) shows
that as the efforts spent by engineers in SA increases,
there would be lesser defects detected in the deployment.
Consequently, less effort spent by engineers in SD would

lead to more defects detected in the test. In figure 7 (c),
when engineers spend less effort in SA, SD and the test,
much more defects would be detected in the deployment
phase.

6. Conclusion
Defects in software could have wide and varying

effects with several levels of inconvenience to users. If
defects are discovered, they will be fixed through
specific actions with extra costs. In order to bring this
cost down, preventing defects by enhancing the
weaknesses of project teams is an ideal method for
software development organizations. For defect
prevention, we proposed a defects analysis method to
diagnose the weaknesses of the project teams. We
described how the defects were objectively collected
during project development. The root causes were
defined and categorized into six groups. Afterwards, we
focused on analyzing the defects to determine their root
causes. Our study has pinpointed how and when defects
are injected into our projects. The weaknesses of the
teams could be identified, so corrective actions and
prevention proposals could then be enacted and planned,
respectively. Statistical results have shown that the

disturbing defects in our projects were mainly injected in
the design phase, especially in the detail design phase.
Moreover, considerable effort should be invested on
enhancing our detail design skills, such as designing
components, algorithms and interfaces, and so on.

Acknowledgements
This research was supported by the Applied

Information Services Development and Integration
project of the Institute for Information Industry (III) and
sponsored by MOEA, Taiwan R.O.C.

References
[1] CMMI Product Team, Capability Maturity Model

Integration V. 1.2, Carnegie Mellon University: SEI,
Pittsburgh, USA, Aug. 2006.

[2] Pressman, Roger S., Software Engineering: A
Practitioner's Approach, 6th Ed., New York: McGraw-
Hill, 2005.

[3] Meng Li., He X. and Ashok S., “Defect Prevention: A
General Framework and Its Application,” in the
Proceedings of Sixth International Conference on
Quality Software (QSIC’06), Beijing, China, Oct.
2006.

[4] C.-P. Chang and C.-P. Chu, “Defect prevention in
software process: An action-based approach,” The
Journal of Systems and Software (80), p.559-570,
2007.

[5] J.H. Van Moll, J.C. Jacobs, B. Freimut and J.J.M.
Trienekens, “The Importance of Life Cycle Modeling
to Defect Detection and Prevention,” In the

Proceedings of the 10th International Workshop on
Software Technology and Engineering Practice,
Washington, DC, USA, 2002

[6] Marek L., Dewayne E. P. and Eieter S., “A Case
Study in Root Cause Defect Analysis,” In the
Proceedings of the 22nd international conference on
Software engineering, p.428-437, Limerick, Ireland,
2000.

[7] Khaled E.E., Drik H. and Nazim H. M., “Causal
Analysis of the Requirements Change Process for a
Large System,” In the Proceedings of the International
Conference on Software Maintenance, Washington,
DC, USA, 1997

[8] Card, D.N., “Learning from our mistakes with defect
causal analysis,” IEEE Software 15 (1), p56-63, 1998.

[9] Leszak, M., Perry, D.E., and Stoll, D., “Classification
and evaluation of defects in a project retrospective,”
The Journal of System and Software (61), p173-187,
2002.

[10] Pooley, R., Senior, D., and Christie, D., “Collecting
and analyzing web-based project metrics,” IEEE
Software 19 (1), p52-58, 2002.

[11] Chi-Lu Yang and Richard Weng, "A Method for
Verifying Usability and Performance of a Multi-user
Healthcare Embedded System," in the Proceedings of
the Thirteenth International Conference on
Distributed Multimedia Systems (DMS'07), p75-80,
San Francisco, USA, Sep. 2007.

Fig. 7. Variance of Defects in Phases

 (a) (b) (c)

